(八)Linux内存管理 – zoned page frame allocator – 3

背景

  • Read the fucking source code!  –By 鲁迅
  • A picture is worth a thousand words. –By 高尔基

说明:

  1. Kernel版本:4.14
  2. ARM64处理器,Contex-A53,双核
  3. 使用工具:Source Insight 3.5, Visio

1. 概述

本文将分析watermark

简单来说,在使用zoned page frame allocator分配页面时,会将可用的free pageszonewatermark进行比较,以便确定是否分配内存。 

同时watermark也用来决定kswapd内核线程的睡眠与唤醒,以便对内存进行检索和压缩处理。

回忆一下之前提到过的struct zone结构体:

struct zone { /* Read-mostly fields */
/* zone watermarks, access with *_wmark_pages(zone) macros */ unsigned long watermark[NR_WMARK];
unsigned long nr_reserved_highatomic; ....}
enum zone_watermarks { WMARK_MIN, WMARK_LOW, WMARK_HIGH, NR_WMARK};

可以看出,总共有三种水印,并且只能通过特定的宏来访问。

  • WMARK_MIN内存不足的最低点,如果计算出的可用页面低于该值,则无法进行页面计数;

  • WMARK_LOW默认情况下,该值为WMARK_MIN的125%,此时kswapd将被唤醒,可以通过修改watermark_scale_factor来改变比例值;

  • WMARK_HIGH默认情况下,该值为WMARK_MAX的150%,此时kswapd将睡眠,可以通过修改watermark_scale_factor来改变比例值;

图来了:

(八)Linux内存管理 - zoned page frame allocator - 3

下边将对细节进一步分析。

1. watermark初始化

先看一下初始化的相关调用函数:

(八)Linux内存管理 - zoned page frame allocator - 3

  • nr_free_buffer_pages:统计ZONE_DMAZONE_NORMAL中可用页面,managed_pages - high_pages

  • setup_per_zone_wmarks:根据min_free_kbytes来计算水印值,来一张图会比较清晰易懂:

  • refresh_zone_stat_thresholds:先来回顾一下struct pglist_datastruct zone

typedef struct pglist_data {...struct per_cpu_nodestat __percpu *per_cpu_nodestats;...} pg_data_t;
struct per_cpu_nodestat { s8 stat_threshold; s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];};
struct zone {...struct per_cpu_pageset __percpu *pageset;...}
struct per_cpu_pageset { struct per_cpu_pages pcp;

从数据结构中可以看出,针对NodeZone,都有一个Per-CPU的结构来存储信息,而refresh_zone_stat_thresholds就跟这两个结构相关,用于更新这两个结构中的stat_threshold字段,具体的计算方式就不表了,此外还计算了percpu_drift_mark,这个在水印判断的时候需要用到该值。阈值的作用就是用来进行判断,从而触发某个行为,比如内存压缩处理等。

  • setup_per_zone_lowmem_reserve:设置每个zonelowmem_reserve大小,代码中的实现逻辑如下图所示。

  • calculate_totalreserve_pages:计算各个zone的保留页面,以及系统的总的保留页面,其中会将high watermark看成保留页面。如图:

2. watermark判断

老规矩,先看看函数调用关系图:

  • __zone_watermark_okwatermark判断的关键函数,从图中的调用关系可以看出,最终的处理都是通过它来完成判断的。还是用图片来说明整体逻辑吧:

上图中左边判断是否有足够的空闲页面,右边直接查询free_area[]是否可以最终进行分配。

  • zone_watermark_ok:直接调用__zone_watermark_ok`,没有其他逻辑。

  • zone_watermark_fast:从名字可以看出,这个是进行快速判断,快速的体现主要是在order = 0的时候进行判断决策,满足条件时直接返回true,否则调用__zone_watermark_ok。贴个代码吧,清晰明了:

static inline bool zone_watermark_fast(struct zone *z, unsigned int order, unsigned long mark, int classzone_idx, unsigned int alloc_flags){ long free_pages = zone_page_state(z, NR_FREE_PAGES); long cma_pages = 0;
  • zone_watermark_ok_safe:在zone_watermark_ok_safe函数中,主要增加了zone_page_state_snapshot的调用,用来计算free_pages,这个计算过程将比直接通过zone_page_state(z, NR_FREE_PAGES)更加精确。
bool zone_watermark_ok_safe(struct zone *z, unsigned int order, unsigned long mark, int classzone_idx){ long free_pages = zone_page_state(z, NR_FREE_PAGES);
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
return __zone_watermark_ok(z, order, mark, classzone_idx, 0, free_pages);}

percpu_drift_maskrefresh_zone_stat_thresholds函数中设置的,这个在上文中已经讨论过了。每个zone维护了三个字段用于页面的统计,如下:

struct zone {...struct per_cpu_pageset __percpu *pageset;.../* * When free pages are below this point, additional steps are taken * when reading the number of free pages to avoid per-cpu counter * drift allowing watermarks to be breached */unsigned long percpu_drift_mark;.../* Zone statistics */atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];}

内核在内存管理中,读取空闲页面与watermark值进行比较,要读取正确的空闲页面值,必须同时读取vm_stat[]__percpu *pageset计算器。如果每次都读取的话会降低效率,因此设定了percpu_drift_mark值,只有在低于这个值的时候,才触发更精确的计算来保持性能。

__percpu *pageset计数器的值更新时,当计数器值超过stat_threshold值,会更新到vm_stat[]中,如下图:

zone_watermark_ok_safe中调用了zone_page_state_snapshot,与zone_page_state的区别如下图所示:

watermark的分析到此为止,收工!

(八)Linux内存管理 – zoned page frame allocator – 3》来自互联网,仅为收藏学习,如侵权请联系删除。本文URL:https://www.hashtobe.com/289.html